269 research outputs found

    Seafloor Observatory Science: a Review

    Get PDF
    The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999). For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995). Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources) (Summerhayes, 1996). The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000). Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003). This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A description of world-wide past and ongoing experiments, as well as concepts presently under study, is also given, with particular attention to European projects and to the Italian contribution. Finally, there is a discussion on “Seafloor Observatory Science” perspectives

    European Multidisciplinary and Water-Column Observatory - European Research Infrastructure Consortium (EMSO ERIC): Challenges and opportunities for Strategic European Marine Sciences

    Get PDF
    EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) is a large-scale European Research Infrastructure I. It is a distributed infrastructure of strategically placed, deep-sea seafloor and water column observatory nodes with the essential scientific objective of real-time, long-term observation of environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere. The geographic locations of the EMSO observatory nodes represent key sites in European waters, from the Arctic, through the Atlantic and Mediterranean, to the Black Sea (Figure 1), as defined through previous studies performed in FP6 and FP7 EC projects such as ESONET-CA, ESONET-NoE, EMSO-PP (Person et al., 2015).Peer ReviewedPostprint (published version

    Contribution to the study of the Apulian microplate geodynamics

    Get PDF
    The fragmentation of the collisional border between the African and European plates has also originated the Apulian (Adriatic) microplate. Recent studies show the possibility of a non-unitary geodynamic evolution of this microplate: palaeomagnetic data from North-Western Greece and Southern Apulia indicate a different rotational behaviour. Between 41' and 43' latitude North, regional strike-slip fault systems cut crosswise the Adriatic basin, breaking the Adriatic block in at least two minor elements. The intense seismicity points out an active defonnational area. In the same region also other geophysical data identify a transitional zone

    Rock properties of the upper-crust in Central Apennines (Italy) derived from high-resolution 3-D tomography

    Get PDF
    High-resolution 3-D P and S-wave velocity models of a central sector of the Apennines (Central Italy) are computed by inverting first arrival times from an aftershock sequence (September–December, 1997) following the Mw 5.7 and Mw 6.0 Umbria-Marche earthquakes that occurred on September 26, 1997. The high quality of the data set, especially for the S-wave, allows us to compute 3-D variations in Vp, Vp/Vs and Vp · Vs. The anomalies can be interpreted as lateral changes in rock type and fracturing, which control fluid diffusion and variation in pore pressure. This is in agreement with a poro-elastic view that can be inferred from the spatio-temporal evolution of the seismic sequence

    Oceanographic signals at the Benthic Boundary Layer in the Mediterranean Sea

    Get PDF
    The Benthic Boundary Layer (BBL) is considered a quite homogeneous environment where a wide variety of processes (chemical, physical, geological and biological) occur often producing front structures or inducing turbulence phenomena. The typical stratification of these zones can be interrupted by episodic events which effects can diffuse to the ocean interior exploiting by local current and mixing processes. According to hydrodynamic definition, the BBL thickness may vary from few millimetres up to 100 metres depending on the friction intensity with the sea bed and the stability of water column above it. Generally in deep-sea condition, the BBL thickness is defined by the ratio between the friction velocity and the Coriolis parameter according to the Ekman scale. In the latest years several experiments have been carried out in the deep water of Mediterranean Sea, focusing on the survey and study of benthic processes following a multidisciplinary approach. Benthic observatories, such as SN-1 and GEOSTAR, allow to record long time-series of geochemical, seismological, geomagnetic, geodetic and oceanographic data and allow to understand the dynamics and evolution of the processes though comparison and interpolation of different types of signals. From a oceanographic point of view, the technology of these benthic observatories brings the possibility to observe and measure directly the hydrological properties at the seafloor collecting data for long-time series and with high sampling rate. The observatories deployed in Mediterranean Sea, have provided good information about variations and oscillations of hydrological parameters in deep water where the monitoring is almost lacking. In some cases it has been possible to link these deep-sea datasets with upper data collected by ship-handled system during the same period or during different cruises. This allows to have a more complete idea of the linkage between surface, intermediate and bottom sea. Hence the multidisciplinary approach represents a very important aspect for this kind of study, because it allows not only a cross check of functionality among all the instruments but also an important tool to recognise and better understand possible nonphysical- oceanographic phenomena

    Seismic location improvements from an OBS/H temporary network in Southern Tyrrhenian Sea

    Get PDF
    We present the first investigation performed on the seismicity of Southern Tyrrhenian Sea, off-shore Sicily with the contribution of data from broad-band ocean bottom seismometers and hydrophones (OBS/H). Offshore data were recorded during the TYrrhenian Deep sea Experiment (TYDE) from December 2000 to May 2001 in the Southern Tyrrhenian Sea. Hypocenter locations of a cluster of 53 seismic events occurred in March 2001 in north-eastern Sicily were estimated by the integration of land (permanent network) and offshore (temporary network) data and compared with locations estimated from land data only. The scatter of the cluster was evaluated by dispersion parameters. The off-shore data significantly reduced the scatter of the swarm hypocenters also restricting the depth range of the cluster. Moreover, space trends of the event distribution originally shown by the land data were only partially confirmed by the land-sea joint data. In order to assess the efficiency in terms of hypocenter mislocations in the subject area, of a land-sea integrated network with respect to a land-based network, we performed simulations by assuming a grid distribution of earthquakes and a recent local 3D velocity model, computing synthetic arrival times of body waves to the stations of both network configurations (integrated and land-based) perturbing the computed times and relocating earthquakes by inversion. The results of the synthetic tests demonstrated that the presence of sea bottom stations in the Tyrrhenian basin can reduce the mislocations of large magnitude and/or superficial earthquakes in the southernmost Calabria and Messina Strait and of low magnitude and/or deep earthquakes in north-eastern Sicily. The major accuracy of synthetic earthquake locations obtained including OBS/H data provides an additional support to the interpretation of the cluster occurred in March 2001 and to the opportunity of long-term installation of an off-shore network like TYDE in the study region

    A new active volcano in the Tyrrhenian Sea?

    Get PDF
    A strong earthquake occurred in 2002 offshore from the northern coast of Sicily in the Southern Tyrrhenian Sea (Italy), and was followed by a series of hundreds of aftershocks. Communications through the fibre-optic cable between Palermo and Rome were interrupted a few hours after the occurrence of the main shock. After the required technical checks, the failure point was found a few kilometres away from the seismic sequence area. A few days later, a specialised cable ship reached the failure area. One side of the cable was completely burnt, while about three kilometres of cable was found locked. Tests on slices of cable showed that the temperature at which the cable was heated went well above 700oC. We can speculate that the earthquakes triggered off the emission of a submarine lava flow that buried, trapped and burnt the fibre-optic cable. The revising of the bathymetric survey made before the cable’s deployment allowed for the identification of a seamount in the vicinity of the rupture. This structure could represent the lava flow’s source volcano

    The Benthic Boundary Layer: geochemical and oceanographic data from the GEOSTAR-2 observatory

    Get PDF
    Geochemical and oceanographic data, acquired throughout 6 months by the GEOSTAR-2 benthic observatory in southern Tyrrhenian Sea, evidenced ocean-lithosphere interactions in the 1900-m deep Benthic Boundary Layer (BBL), distinguishing two water masses with different origin and, possibly, benthic residence time. Gas concentration, helium isotopic ratios, radioactivity, temperature, salinity and vertical component of the current converged towards the indication of a BBL characterised by a colder and fresher western water (WW), which is episodically displaced by the cascading of the warmer and saltier Eastern Overflow Water (EOW). The benthic WW has higher concentration of geochemical tracers diffusing from the seafloor sediments. The data set shows the potential of long-term, continuous and multiparametric monitoring in providing unique information which cannot be acquired by traditional, short-term or single-sensor investigations

    Tsunami Early Warning System: Deep Sea Measurements in the Source Area

    Get PDF
    In the framework of the EU project NEAREST, a new Tsunami Early Warning System (TEWS), able to operate in tsunami generation areas, was developed and installed in the Gulf of Cadiz. The TEWS is based on the abyssal station GEOSTAR, placed above a major tsunamigenic structure, and on three seismic centres of Portugal, Spain and Morocco. The core of the system is a tsunami detector installed onboard of GEOSTAR. The tsunami detector communicates with a surface buoy through a dual acoustic link. The buoy is connected to land stations via satellite link. The system was designed for near-field conditions and successfully operated from August 2007 to August 2008, 100 km SW of Cabo de Sao Vincente (Portugal). A new mission started on November 11th, 2009 in the same location. The tsunami detection is based either on pressure events either on seismic events. The bottom pressure data are analysed in real-time at the seafloor by a new tsunami detection algorithm, which can recognize tsunami waves as small as one centimetre. At the same time it was developed a new theoretical approach to account for tsunami generation in compressible water and in presence of a porous sediment. This model showed that hydro-acoustic waves, travelling much faster than the tsunami, are caused by the seafloor motion. These waves can propagate outside the generation area and are characterised by a modulation carrying valuable information on the seafloor motion, which can be recovered from their first arrival

    Foreland deformational pattern in the Southern Adriatic Sea

    Get PDF
    Two major deformation belts occur in the portion of the Adriatic Sea offshore the Gargano Promontory. Although these two belts display similar characters on seismic profiles, they are different in other respects. The NE-SWtrending Tremiti Deformation Belt, located north of the Gargano Promontory, originated during the Plio-Quaternary, while the E-W-trending South Gargano Deformation Belt, located south of the Gargano Promontory, formed in a time span that goes from Eocene to early Pliocene. On the ground of structural and stratigrafic evidence these deformation belts are interpreted as originated by tectonic inversion of Mesozoic extensional faults. This inversion tectonics, of Tertiary age, can be related to the evolution of the fold-and-thrust belts that surround the Adriatic Sea. A moderate seismic activity, recorded around the Tremiti Island, and historical seismological data suggest that the whole of study area is, at present, seismically active. Therefore, this portion of the Adriatic block still represents a preferental site of deformation
    • …
    corecore